环球教育在线测试系统

托福阅读素材:板块构造对物种的影响

2017-09-25编辑: 环球教育整理来自: 环球教育

  很多考生会抱怨托福阅读时间不够,还没完全理解文章就做题,正确率不高。其实这是我们对托福阅读素材不熟悉造成的,下面小编整理了一下托福阅读考试最新的素材,希望能帮助大家更加快速高效的备考托福。

  托福阅读素材:板块构造对物种的影响

  内容回忆:

  第一段:地质板块对于气候 climate 和地理的影响;

  第二段:如果地质板块形成的区域 province 越多,物种多样性则越高

  第三段:地质板块对于风 wind, 洋流 sea current 会产生影响,从而影响物种分布 distribution of species;

  第四段:很多北方物种会迁徙到南方去,南方物种被北方来的迁徙(migrate, migration)物种所替代,而南方物种却很少迁徙到北方。

  参考阅读:TPO42-1 Geographic Isolation of Species

  Geographic Isolation of Species

  Biologist Ernst Mayr defined a species as “an actually or potentially interbreeding population that does not interbreed with other such populations when there is opportunity to do so.” A key event in the origin of many species is the separation of a population with its gene pool (all of the genes in a population at any one time) from other populations of the same species, thereby preventing population interbreeding. With its gene pool isolated, a separate population can follow its own evolutionary course. In the formation of many species, the initial isolation of a population seems to have been a geographic barrier. This mode of evolving new species is called allopatric speciation.

  Many factors can isolate a population geographically. A mountain range may emerge and gradually split a population of organisms that can inhabit only lowland lakes, certain fish populations might become isolated in this way. Similarly, a creeping glacier may gradually divide a population, or a land bridge such as the Isthmus of Panama may form and separate the marine life in the ocean waters on either side.

  How formidable must a geographic barrier be to keep populations apart? It depends on the ability of the organisms to move across barriers. Birds and coyotes can easily cross mountains and rivers. The passage of wind-blown tree pollen is also not hindered by such barriers, and the seeds of many plants may be carried back and forth on animals In contrast, small rodents may find a deep canyon or a wide river an effective barrier. For example, the Grand Canyon, in the southwestern United States, separate the range of the while-tailed antelope squirrel from that of the closely related Harris’ antelope squirrel. Smaller, with a shorter tail that is white underneath, the white-tailed antelope squirrel inhabits deserts north of the canyon and west of the Colorado River in southern California Hams' antelope squirrel has a more limited range in deserts south of the Grand Canyon.

  Geographic isolation creates opportunities for new species to develop, but it does not necessarily lead to new species because speciation occurs only when the gene pool undergoes enough changes to establish reproductive barriers between the isolated population and its parent population. The likelihood of allopatric speciation increases when a population is small as well as isolated, making it more likely than a large population to have its gene pool changed substantially. For example, in less than two million years, small populations of stray animals and plants from the South American mainland that managed to colonize the Galapagos Islands gave rise to all the species that now inhabit the islands.

  When oceanic islands are far enough apart to permit populations to evolve in isolation, but close enough to allow occasional dispersions to occur, they are effectively outdoor laboratories of evolution. The Galapagos island chain is one of the world’s greatest showcases of evolution. Each island was born from underwater volcanoes and was gradually covered by organisms derived from strays that rode the ocean currents and winds from other islands and continents. Organisms can also be carried to islands by other organisms, such as sea birds that travel long distances with seeds clinging to their feathers.

  The species on the Galapagos Islands today, most of which occur nowhere else, descended from organisms that floated, flew, or were blown over the sea from the South American mainland. For instance, the Galapagos island chain has a total of thirteen species of closely related birds called Galapagos finches. These birds have many similarities but differ in their feeding habits and their beak type, which is correlated with what they eat. Accumulated evidence indicates that all thirteen finch species evolved from a single small population of ancestral birds that colonized one of the islands. Completely isolated on the island after migrating from the mainland, the founder population may have undergone significant changes in its gene pool and become a new species. Later, a few individuals of this new species may have been blown by storms to a neighboring island. Isolated on this second island, the second founder population could have evolved into a second new species, which could later recolonize the island from which its founding population emigrated. Today each Galapagos island has multiple species of finches, with as many as ten on some islands.

  更多托福阅读考试信息

  了解环球教育托福课程

预约托福水平在线测试
获取0元体验课程

  • 2019年托福考试备考指南
  • 托福考前必备事项
  • 托福加试分析
  • 托福长难句100备考素材
  • 环球教育托福课程体系