托福阅读素材:天体的水
2017-09-21编辑: 环球教育整理来自: 环球教育
很多考生会抱怨托福阅读时间不够,还没完全理解文章就做题,正确率不高。其实这是我们对托福阅读素材不熟悉造成的,下面小编整理了一下托福阅读考试最新的素材,希望能帮助大家更加快速高效的备考托福。
托福阅读素材:天体的水
内容回忆:金星离太阳太近水汽无法凝结逸散到外太空,现在大气里有九成 CO2 更热,永远不可能有水。火星有水的遗迹,以前降雨和火山活动可以完成 CO2 循环保证液态水的形成温度,但后来火山活动停止,无法释放 CO2 保温,且由于火星太小地心热量太少,太冷所以极地只有有冰。地球距离太阳刚好地壳年轻地心够热所以有水。
参考阅读:TPO8-1-3 : Running Water on Mars
Photographic evidence suggests that liquid water once existed in great quantity on the surface of Mars. Two types of flow features are seen: runoff channels and outflow channels. Runoff channels are found in the southern highlands. These flow features are extensive systems—sometimes hundreds of kilometers in total length—of interconnecting, twisting channels that seem to merge into larger, wider channels. They bear a strong resemblance to river systems on Earth, and geologists think that they are dried-up beds of long-gone rivers that once carried rainfall on Mars from the mountains down into the valleys. Runoff channels on Mars speak of a time 4 billion years ago (the age of the Martian highlands), when the atmosphere was thicker, the surface warmer, and liquid water widespread.
Outflow channels are probably relics of catastrophic flooding on Mars long ago. They appear only in equatorial regions and generally do not form extensive interconnected networks. Instead, they are probably the paths taken by huge volumes of water draining from the southern highlands into the northern plains. The onrushing water arising from these flash floods likely also formed the odd teardrop-shaped “islands” (resembling the miniature versions seen in the wet sand of our beaches at low tide) that have been found on the plains close to the ends of the outflow channels. Judging from the width and depth of the channels, the flow rates must have been truly enormous—perhaps as much as a hundred times greater than the 105 tons per second carried by the great Amazon river. Flooding shaped the outflow channels approximately 3 billion years ago, about the same times as the northern volcanic plains formed.
Some scientists speculate that Mars may have enjoyed an extended early Period during which rivers, lakes, and perhaps even oceans adorned its surface. A 2003 Mars Global Surveyor image shows what mission specialists think may be a delta—a fan-shaped network of channels and sediments where a river once flowed into a larger body of water, in this case a lake filling a crater in the southern highlands. Other researchers go even further, suggesting that the data provide evidence for large open expenses of water on the early Martian surface. A computer-generated view of the Martian north polar region shows the extent of what may have been an ancient ocean covering much of the northern lowlands. The Hellas Basin, which measures some 3,000 kilometers across and has a floor that lies nearly 9 kilometers below the basin’s rim, is another candidate for an ancient Martian sea.
These ideas remain controversial. Proponents point to features such as the terraced “beaches” shown in one image, which could conceivably have been left behind as a lake or ocean evaporated and the shoreline receded. But detractors maintain that the terraces could also have been created by geological activity, perhaps related to the geologic forces that depressed the Northern Hemisphere far below the level of the south, in which case they have nothing whatever to do with Martian water. Furthermore, Mars Global Surveyor data released in 2003 seem to indicate that the Martian surface contains too few carbonate rock layers—layers containing compounds of carbon and oxygen—that should have been formed in abundance in an ancient ocean. Their absence supports the picture of a cold, dry Mars that never experienced the extended mild period required to form lakes and oceans. However, more recent data imply that at least some parts of the planet did in fact experience long periods in the past during which liquid water existed on the surface.
Aside from some small-scale gullies (channels) found since 2000, which are inconclusive, astronomers have no direct evidence for liquid water anywhere on the surface of Mars today, and the amount of water vapor in the Martian atmosphere is tiny. Yet even setting aside the unproven hints of ancient oceans, the extent of the outflow channels suggests that a huge total volume of water existed on Mars in the past. Where did all the water go? The answer may be that virtually all the water on Mars is now locked in the permafrost layer under the surface, with more contained in the planet’s polar caps.
更多托福阅读考试信息
了解环球教育托福课程

相关阅读
-
预约托福水平在线测试
获取0元体验课程