托福阅读素材:松树
2017-09-19编辑: 环球教育整理来自: 环球教育
While mineral deficiencies can limit the growth of plants, an overabundance of certain minerals can be toxic and can also limit growth. Saline soils, which have high concentrations of sodium chloride and other salts, limit plant growth, and research continues to focus on developing salt-tolerant varieties of agricultural crops. Research has focused on the toxic effects of heavy metals such as lead, cadmium, mercury, and aluminum; however, even copper and zinc, which are essential elements, can become toxic in high concentrations. Although most plants cannot survive in these soils, certain plants have the ability to tolerate high levels of these minerals.
Scientists have known for some time that certain plants, called hyperaccumulators, can concentrate minerals at levels a hundredfold or greater than normal. A survey of known hyperaccumulators identified that 75 percent of them amassed nickel, cobalt, copper, zinc, manganese, lead, and cadmium are other minerals of choice. Hyperaccumulators run the entire range of the plant world. They may be herbs, shrubs, or trees. Many members of the mustard family, spurge family, legume family, and grass family are top hyperaccumulators. Many are found in tropical and subtropical areas of the world, where accumulation of high concentrations of metals may afford some protection against plant-eating insects and microbial pathogens.
Only recently have investigators considered using these plants to clean up soil and waste sites that have been contaminated by toxic levels of heavy metals–an environmentally friendly approach known as phytoremediation. This scenario begins with the planting of hyperaccumulating species in the target area, such as an abandoned mine or an irrigation pond contaminated by runoff. Toxic minerals would first be absorbed by roots but later relocated to the stem and leaves. A harvest of the shoots would remove the toxic compounds off site to be burned or composted to recover the metal for industrial uses. After several years of cultivation and harvest, the site would be restored at a cost much lower than the price of excavation and reburial, the standard practice for remediation of contaminated soils. For examples, in field trials, the plant alpine pennycress removed zinc and cadmium from soils near a zinc smelter, and Indian mustard, native to Pakistan and India, has been effective in reducing levels of selenium salts by 50 percent in contaminated soils.
The Arrival of Plant Life in Hawaii
When the Hawaiian Islands emerged from the sea as volcanoes, starting about five million years ago, they were far removed from other landmasses. Then, as blazing sunshine alternated with drenching rains, the harsh, barren surfaces of the black rocks slowly began to soften. Winds brought a variety of life-forms. Spores light enough to float on the breezes were carried thousands of miles from more ancient lands and deposited at random across the bare mountain flanks. A few of these spores found a toehold on the dark, forbidding rocks and grew and began to work their transformation upon the land. Lichens were probably the first successful flora. These are not single individual plants; each one is a symbiotic combination of an alga and a fungus. The algae capture the sun's energy by photosynthesis and store it in organic molecules. The fungi absorb moisture and mineral salts from the rocks, passing these on in waste products that nourish algae. It is significant that the earliest living thing that built communities on these islands are examples of symbiosis, a phenomenon that depends upon the close cooperation of two or more forms of life and a principle that is very important in island communities.
相关阅读
-
预约托福水平在线测试
获取0元体验课程